If it's not what You are looking for type in the equation solver your own equation and let us solve it.
52x^2-55x-63=0
a = 52; b = -55; c = -63;
Δ = b2-4ac
Δ = -552-4·52·(-63)
Δ = 16129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16129}=127$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-55)-127}{2*52}=\frac{-72}{104} =-9/13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-55)+127}{2*52}=\frac{182}{104} =1+3/4 $
| 3-2x=5x-(7x-3) | | 8k^2+3k=1 | | w/5=-11 | | z/3-2=10 | | 6a+15a=21a | | -1-7(-3x+1)=10x-30 | | -4n-8n=-6n-n | | 135=50+(10+8)w | | 16-3r=1-8r | | 9(1+b)=72 | | 7x+10=7x-2 | | 1=8+x/25 | | -3(5p-7)-3p=111 | | 8-5r=-3r-4+4r+12 | | q=0 | | 3y+5+7y-25=180 | | -1-79-3x=10=10x-30 | | h/27=2 | | 7m+30=-2 | | 2(x-1)=7x+3-5x | | 15y=112 | | 2m-1=4+m | | 5.5=7.3-0.3x | | 10-3x=2x-5x+40 | | 0.3x+1.8=04(x+5)-0.2 | | 65=(9x-34) | | 2x+(x÷2)=10 | | 96=6(8-4x) | | 9m+3=27 | | 3x+2.7=8.4 | | 8b-4-10=-12 | | 4(2x-4)=2(x+6) |